If it's not what You are looking for type in the equation solver your own equation and let us solve it.
e^2-10e+16=0
a = 1; b = -10; c = +16;
Δ = b2-4ac
Δ = -102-4·1·16
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$e_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$e_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$e_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-6}{2*1}=\frac{4}{2} =2 $$e_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+6}{2*1}=\frac{16}{2} =8 $
| 1+2x=-8-x | | 200x=3/2= | | 3-7x+7=24 | | 1-((x-0.95)/(1.05-0.95))=0.9 | | 7(n-5)-(3-6n)=12n | | A=5x-18B=3x+42 | | -1/5+7/10y=3/5y+6/5 | | -1=n-10/21 | | 15x^2-180x-420=0 | | 6x+4-x=8+4x-8 | | (3x-5)=32 | | -5(7x2)=220 | | 9^2+21.6^2=x^2 | | 1.5x^-18x=42 | | 5^2+x2=13^2 | | 7(x+3)=45-3(12x) | | x+-6=15 | | 4d−–9=85 | | 1=8•/•a | | c^+28c+75=0 | | 3+2.x=1 | | m^2-26m+120=0 | | 4x4=4+ | | 3(9x+3)=6(5x+1) | | 0.5(13+x)=1.3+4.1x-3.6x+5.2 | | 0.2(10+5x)=1.3+4.1x-3.6x+5.2 | | 5G=7g-6 | | 2p=p+ | | -10n+4n=-6n | | 2a+6a=8a | | 180=14x-15+139 | | 2(r+7)=14 |